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The Memory Wall

[Shao-Peng + UNSENIX ATC’23]

Memory wall
 Growing imbalance between computing power and memory capacity requirement.
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The Memory Wall

To better process data in GPU  à  Want to store LARGE datasets as in-memory object.

CPU-Centric
• CPU/OS partition datasets into chunks and transfer data to GPU.
• GPU page fault to activate CPU page fault handler (through file map) to transfer data to GPU.

DRAM-Only
• Use host memory || Pool multiple-GPUs’ memory

bottleneck

expensive

NVIDIA A100 : 80GB
$19,500 from Amazon

DDR4 : 96GB
$300 ~ $500 from Amazon

NAND Flash : 2TB
$129 from Amazon
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Solution: Let GPUs utilize DRAM/SSDs



What is BaM System?

CPU-Initiated Storage Access
Ø High CPU-GPU synchronization overheads
Ø I/O traffic amplification
Ø Long CPU processing latencies.

GPU-Initiated Storage Access
Ø GPU sends on-demand requests
Ø Thread request coalescer and software cache
Ø High throughput queue

cheap & scale

reduce
sync.
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Compared to CPU-Centric
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https://youtu.be/qQVpaCpbCHY?t=73&si=q0I-UWuzxBbZu4pD

• Proactive Tiling
• On-Demand Access using the CPU (UVM/GPUfs)
• Abundant CPU Memory

https://youtu.be/qQVpaCpbCHY?t=73&si=q0I-UWuzxBbZu4pD


BaM in High Level

…

Massive Threads

BaM 
Abstraction Layer

Storage

Interconnect

BaM (Big Accelerator Memory) Abstraction
Challenges for BaM 

GPU
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• Avoid CPU software bottleneck (page fault handler, etc.)
• Satisfy massive GPU threads high parallelism.
• Hide latency.
• Achieve high bandwidth.
• Software APIs.

Goal for BaM 

Provide high-level abstractions 
for accelerators to make 

on-demand, fine-grained, high-throughput access 
to storage.



BaM System Overview
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Figure 1: Logical view of BaM design.

• NVMe high throughput queue design
• Map the needed storage address space
• In-GPU cache design

Key Ideas



BaM System And Architecture
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Figure 1: Life of a GPU thread in BaM



High Throughput Queue Design
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• Hide latency
• Achieve high throughput

Enqueuing a command and ring the doorbell 
requires critical section involved.

NVMe queues are circular.

(a) Virtual infinite queue for a physical queue of size 8

(b) Mapping the virtual queue entry in the physical queue

Infinite virtual queue
ticket, position, turn

logical view
ordering by 

pos-turn



Parallelism for Enqueuing Commands 

Figure 1: Example of Enqueuing Commands 



Software API Design
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(a) GPU linear access benchmark kernel code

(b) GPU linear access benchmark kernel code with BaM abstraction

• Pure software implementation
• Lightly modification to existing codes.
• Transparent to programmers.



Enable Direct NVMe Access From GPU Threads
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To enable GPU threads to directly access data on NVMe SSDs we need to: 

• Move the NVMe queues and I/O buffers from the host CPU memory to the GPU memory. 

• Enable GPU threads to write to the queue doorbell registers in the NVMe SSD’s BAR space.

• A custom Linux driver that creates a character device per NVMe SSD in the system like SmartIO.

• GPUDirect RDMA APIs to pin and map NVMe queues and I/O buffers in the GPU memory.

• GPUDirect Async to map the NVMe SSD doorbells to the CUDA address space. 

For NVMe SSD controller

Applications use BaM APIs to open the character device for each SSD

SSD to perform peer-to-peer data reads and writes to the GPU memory

GPU threads can ring the doorbells on demand

Other storage 
systems can be 

enabled similarly.
NVIDIA P2P

https://github.com/enfiskutensykkel/ssd-gpu-dma


The BaM Hardware Prototype

Figure 1: Physical BaM prototype

Independent 
Drawers

Not Multi-GPUs

Figure 2: Logical BaM prototype
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BaM Throughput Scaling 

Intel Optane P5800X SSDs; Queue Depth:1024; 512B request/thread (RR distributed)
Random R/W

Peak: 45.8M random read IOPs Peak: 10.6M random write IOPs

Random Read : 22.9GBps (90% of the measured peak bandwidth for Gen4 ×16 PCIe links) 
Random Write: 5.3GBps
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Compared to NVIDIA GPUDirect Storage

25GBps

GDS: With 16 CPU threads.
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fio:  Transfer 128GB of data from 4 SSDs to GPU



Compared to ActivePointers
A warp is assigned to read 1024 contiguous 8-byte elements in a file 

where threads access the elements in a coalesced manner.

16[ActivePointers:]

ActivePointers (AP): file is pinned in the Linux page cache in CPU memory.
BaM (B): file is kept on four SSDs.

thread number

cache-line size

cache status



Evaluation on Graph Analytics

1 SSD   : 1.43x slowdown
4 SSDs : 1.00x speedup

1 SSD   : 1.27x slowdown
4 SSDs : 1.49x speedup
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(a) Dataset used in graph analytics

(b) Performance breakdown
T: DRAM-only CPU solution

#SSDs



Evaluation on Graph Analytics

Figure 1: Source of performance improvement in BaM

Naive Cache.       : 11.9x (BFS) and 12.6x (CC) speedup
Optimized Cache: additional 6.07x (BFS) and 11.24x (CC) speedup
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Evaluation on Data Analytics
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Figure 1: Performance of BaM and NVIDIA RAPIDS.

NYC taxi ride dataset (over 50GB in size) and six queries

RAPIDS: pin the entire dataset file in the Linux CPU page cache.
BaM: data in 1-4 SSDs, 8GB cache, 4KB cache-line

RAPIDS experiences software overheads on the CPU to find and move data and manage the GPU memory



Evaluation on VectorAdd Workload
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Take two input arrays with four billion elements (eight-Byte) each.
Input vectors are in storage, output vector requires to written to the storage.

30GB

Baseline: VA_T, vector add with proactive tiling approach, split four billion elements into five tiles.
BaM: VA_B, 8GB cache, 4KB cache-line, four SSDs (4I), w/ cache-line aware optimization (BO).

2x 
slower

1.5x 
slower

1.06x 
slower



Conclusion
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BaM, the first accelerator-centric system architecture 
that enable GPUs to orchestrate 

high-throughput, fine-grained access to storage 
without the CPU software bottleneck.



BaM Related Works
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From the BaM authors

GPUDirect demo by NASA: https://youtu.be/GAZP1NcdWMo?si=OgY5WyxucYK29178
BaM source code: https://github.com/ZaidQureshi/bam
I(nterface) S(pecialization) A(pproaches) for storage system: https://www.youtube.com/watch?v=LBRRm3IfttM

Other Resources

https://youtu.be/GAZP1NcdWMo?si=OgY5WyxucYK29178
https://github.com/ZaidQureshi/bam
https://www.youtube.com/watch?v=LBRRm3IfttM

