GPU-Initiated On-Demand High-Throughput Storage Access in the **BaM** System Architecture

Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna Masood, Jeongmin Park, Jinjun Xiong, C. J. Newburn, Dmitri Vainbrand, I-Hsin Chung, Michael Garland, William Dally, **Wen-mei Hwu**

UIUC/NVIDIA/IBM/University at Buffalo/Standford

ASPLOS 2023

The Memory Wall

Memory wall

Growing imbalance between computing power and memory capacity requirement.

The Memory Wall

To better process data in GPU \rightarrow Want to store LARGE datasets as in-memory object.

Solution: Let GPUs utilize DRAM/SSDs

CPU-Centric bottleneck

- CPU/OS partition datasets into chunks and transfer data to GPU.
- GPU page fault to activate CPU page fault handler (through file map) to transfer data to GPU.

DRAM-Only expensive

• Use host memory || Pool multiple-GPUs' memory

What is **BaM System**?

(a) CPU-Centric Model.

cheap & scale CPU Initialize() initialize(ssd,off,size) launchKernel() reduce sync. GPU Compute write(offset,tid) kernelDone()

GPU-Initiated Storage Access

- GPU sends on-demand requests
- Thread request coalescer and software cache
- High throughput queue

CPU-Initiated Storage Access

- High CPU-GPU synchronization overheads
- \succ I/O traffic amplification
- Long CPU processing latencies.

Compared to CPU-Centric

- Proactive Tiling
- On-Demand Access using the CPU (UVM/GPUfs)
- Abundant CPU Memory

https://youtu.be/qQVpaCpbCHY?t=73&si=q0I-UWuzxBbZu4pD

BaM in High Level

BaM (Big Accelerator Memory) Abstraction

Challenges for BaM

- Avoid CPU software bottleneck (page fault handler, etc.)
- Satisfy massive GPU threads high parallelism.
- Hide latency.
- Achieve high bandwidth.
- Software APIs.

Goal for BaM

Provide high-level abstractions for **accelerators** to make **on-demand, fine-grained, high-throughput** access to storage.

BaM System Overview

Figure 1: Logical view of BaM design.

Key Ideas

- NVMe high throughput queue design
- Map the needed storage address space
- In-GPU cache design

BaM System And Architecture

Figure 1: Life of a GPU thread in BaM

High Throughput Queue Design

Hide latency
Achieve high throughput
Enqueuing a command and ring the doorbell requires critical section involved.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 (a) Virtual infinite queue for a physical queue of size 8

(b) Mapping the virtual queue entry in the physical queue

...

Parallelism for Enqueuing Commands

Software API Design

```
__global__
     void kernel(unsigned* data, size_t elems_per_thread, unsigned* ret)
2
3
     {
       size_t tid = blockldx.x * blockDim.x + threadldx.x;
4
      size_t wid = tid / 32;
5
       size_t lane = tid % 32;
6
       size_t start = wid * elems_per_thread * 32 + lane;
7
       size_t end = (wid+1) * elems_per_thread * 32;
8
      for (; start < end; start+=32)</pre>
9
           *ret += data[start];
10
    }
```

(a) GPU linear access benchmark kernel code

- Pure software implementation
- Lightly modification to existing codes.
- Transparent to programmers.

```
__global__
     void kernel(bam::array<unsigned> data, size_t elems_per_thread, unsigned* ret)
2
3
     {
      size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
4
5
      size_t wid = tid / 32;
      size_t lane = tid % 32;
6
       size_t start = wid * elems_per_thread * 32 + lane;
7
       size_t end = (wid+1) * elems_per_thread * 32;
8
       for (; start < end; start+=32)</pre>
9
10
          *ret += data[start];
    }
```

(b) GPU linear access benchmark kernel code with BaM abstraction

Enable Direct NVMe Access From GPU Threads

To enable GPU threads to **directly access data** on NVMe SSDs we need to:

- Move the NVMe queues and I/O buffers from the host CPU memory to the GPU memory.
- Enable GPU threads to write to the queue doorbell registers in the NVMe SSD's **BAR space**.

GPUDirect Async to map the NVMe SSD doorbells to the CUDA address space.
 GPU threads can ring the doorbells on demand

The BaM Hardware Prototype

Independent Drawers

Not Multi-GPUs

Supermicro 4124GS-TNR

H3 Falcon 4016

Figure 1: Physical BaM prototype

Figure 2: Logical BaM prototype

BaM Throughput Scaling

Intel Optane P5800X SSDs; Queue Depth:1024; 512B request/thread (RR distributed) Random R/W

Random Read : 22.9GBps (90% of the measured peak bandwidth for Gen4 ×16 PCIe links) Random Write: 5.3GBps

Compared to NVIDIA GPUDirect Storage

fio: Transfer 128GB of data from 4 SSDs to GPU GDS: With 16 CPU threads.

Compared to ActivePointers

A warp is assigned to read 1024 contiguous 8-byte elements in a file where threads access the elements in a coalesced manner.

[ActivePointers:]

Evaluation on Graph Analytics

Graph	Num. Nodes	Num. Edges	Size (GB)
GAP-kron (K) [7]	134.2M	4.22B	31.5
GAP-urand (U) [7]	134.2M	4.29B	32.0
Friendster (F) [68]	65.6M	3.61B	26.9
MOLIERE_2016 (M) [59]	30.2M	6.67B	49.7
uk-2007-05 (Uk) [10, 11]	105.9M	3.74B	27.8

(a) Dataset used in graph analytics

Evaluation on Graph Analytics

■ Compute ■ BaM Cache API ■ Storage

Figure 1: Source of performance improvement in BaM

Naive Cache. : **11.9x** (BFS) and **12.6x** (CC) speedup Optimized Cache: **additional 6.07x** (BFS) and **11.24x** (CC) speedup

Evaluation on Data Analytics

NYC taxi ride dataset (over 50GB in size) and six queries

Figure 1: Performance of BaM and NVIDIA RAPIDS.

RAPIDS: **pin** the entire dataset file in the Linux CPU page cache. **BaM**: data in 1-4 SSDs, 8GB cache, 4KB cache-line

RAPIDS experiences **software overheads** on the CPU to find and move data and manage the GPU memory

Evaluation on VectorAdd Workload

30GB

Take two input arrays with four billion elements (eight-Byte) each. Input vectors are in storage, output vector requires to written to the storage.

Baseline: VA_T, vector add with **proactive tiling approach**, split four billion elements into five tiles. **BaM**: VA_B, 8GB cache, 4KB cache-line, four SSDs (4I), w/ cache-line aware optimization (BO).

Conclusion

BaM, the first accelerator-centric system architecture that enable GPUs to orchestrate high-throughput, fine-grained access to storage without the CPU software bottleneck.

BaM Related Works

From the BaM authors

[VLDB'21] EMOGI: Efficient Memory-access for Out-of-memory Graph-traversal in GPUs
[VLDB'21] Large Graph Convolutional Network Training with GPU-Oriented Data Communication Architecture
[ASPLOS'23] GPU-Initiated On-Demand High-Throughput Storage Access in the BaM System Architecture
[ARXIV'23] Accelerating Sampling and Aggregation Operations in GNN Frameworks with GPU Initiated Direct Storage Accesses
[PhD Dissertation] Infrastructure to Enable and Exploit GPU Orchestrated High Throughput Storage Access on GPU
[PhD Dissertation] Application support and adaptation for high-throughput accelerator orchestrated fine-grain storage access

Other Resources

GPUDirect demo by NASA: <u>https://youtu.be/GAZP1NcdWMo?si=OgY5WyxucYK29178</u> BaM source code: <u>https://github.com/ZaidQureshi/bam</u> I(nterface) S(pecialization) A(pproaches) for storage system: <u>https://www.youtube.com/watch?v=LBRRm3IfttM</u>